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1. Introduction

The central question in this writeup is given to students as extra credit in Jozef Przytycki’s Math 1009

as a way of gauging their fluency with the necessary definitions. Answers, when presented, are given

without the expectation of proof.

This writeup is meant to take an elementary approach to solving the problem, requiring only basic

group theory and some knowledge of links and graphs. Thank you to Professor Lewis for helping me to

reformulate my question, and to Professor Przytycki for introducing me to the problem (it’s actually the

first I remember receiving from him!).

Question
How many components does the Tait Diagram of the Grid Graph 𝐺𝑚,𝑛 have?

That is, what is #𝐶 (𝐷 (𝐺𝑚,𝑛))?

Let’s begin by defining all the relevant terms.

2. Tait Diagrams & Grid Graphs

2.1. Tait Diagram. The Tait Diagram of a planar graph 𝐺 is a link diagram associated to 𝐺 . It is con-

structed in the following way:

To each edge of the graph𝐺 , we associate a crossing of our link diagram, 𝐷 (𝐺). Regarding an edge of𝐺

as a North-South longitude, we place an overcrossing along the NE-SW axis and an undercrossing along

the NW-SE axis as in Figure 2.1:

Figure 2.1. Crossing of Tait Diagram Along Edge of Graph

With every crossing drawn along the edges of 𝐺 , we connect each understrand of a crossing to the

closest overstrand. Connected arcs will lie along edges of 𝐺 with a common vertex, and their connection

will never cross over an edge of 𝐺 . See Figure 2.2 for an example. As described, this construction will

always produce an alternating link diagram.

For more on Tait Diagrams of planar graphs, see the remark at the end, which illustrates the algorithm

by which we can produce any link diagram.
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Figure 2.2. Tait Diagram of (Unsigned) Graph

2.2. Grid Graphs and Components of Link Diagrams. We give the definition of Grid Graph and then

the definition of link components.

Definition. A grid graph 𝐺𝑚,𝑛 is an (𝑚 + 1) × (𝑛 + 1) lattice-graph; that is, the graph Cartesian Product

𝑃𝑚+1 × 𝑃𝑛+1 of the path graphs of𝑚 + 1 and 𝑛 + 1 vertices. In our naming convention, the grid graph𝐺𝑚,𝑛

has𝑚 rows of boxes (circulants 𝐶4) and 𝑛 columns of boxes. [1]

See Figure 2.3.

Figure 2.3. Grid Graph 𝐺3,6

Definition (Components of Link Diagram). Intuitively, a component of a link diagram is one of finitely

many images of circles in the plane which comprise said diagram. In Figure 2.4, we have a two-component

link. Note that in particular, knots are links of 1 components.

Formally, for a link 𝐿 defined by the embedding 𝑙 :

⊔𝑛 𝑆1 ↩→ 𝑆3, the link diagram of 𝐿 is identified

by the image of an immersion 𝑝 which projects the image of 𝑙 to R2
with finitely many double points. A

component of a link diagram is the image of a copy of 𝑆1 under 𝑝 ◦ 𝑙 . The number of link components is 𝑛.

In our solution, we also refer to the connected components of graphs, and though I will use 𝐶 (∗) to
denote the components of both graphs and links, the referenced object should always be clear through

context.

Figure 2.4. A link diagram with components in red and blue

With that last definition, we have all the necessary machinery to understand the question asked:
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Question
How many components does the Tait Diagram of the Grid Graph 𝐺𝑚,𝑛 have?

That is, what is #𝐶 (𝐷 (𝐺𝑚,𝑛))?

3. Solution

To find #𝐶 (𝐷 (𝐺𝑚,𝑛)), we build the following string of equalities:

#𝐶 (𝐷 (𝐺𝑚,𝑛))=#𝐶 (𝐺𝑥,𝑦𝑛 )=
𝑙 (𝑥𝑦𝑛)

2

= gcd(𝑚 + 1, 𝑛 + 1) .

We restate, define, and prove the individual equalities from left to right, building a bridge fromUnknown

to Known.

3.1. Tait Tangles and Permutations. ??
To begin, let’s define an intermediate object: the “Tait Tangle.”

Definition (Tait Tangle). Let 𝜏 (𝐺𝑚,𝑛) be the 2𝑚 + 2-tangle defined by forming the crossings of the Tait

Diagram of 𝐺𝑚,𝑛 and closing all but the 2𝑚 + 2 arcs on the left- and right-hand sides of the diagram as in

Figure 3.1.

Figure 3.1. Tait Tangle of 𝐺2,3

Let’s label the left-hand-side arcs of 𝜏 (𝐺𝑚,𝑛) from bottom to top by 1 ≤ 𝑖 ≤ 2𝑚 + 2 and mark the output

arcs on the right-hand side again as in Figure 3.1.

Our goal is to analyze how closing the Tait Tangle to produce the Tait Diagram is an equivalence relation

on the arcs. Thus, counting the number of equivalence classes of the 2𝑚+2 arcs of the Tait Tangle after the
pairwise identification of LHS and RHS arcs is precisely counting the number of components of 𝐷 (𝐺𝑚,𝑛).

Clear from the picture of the Tait Tangle and the definition of the Tait Diagram is that the aforemmen-

tioned closure operation which takes 𝜏 (𝐺𝑚,𝑛) → 𝐷 (𝐺𝑚,𝑛) identifies adjacent pairs of strands from bottom

to top. In particular, the LHS strands are always identified as

[1] = [2], [3] = [4], . . . , [2𝑚 + 1] = [2𝑚 + 2] .
See Figure 3.2.
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Figure 3.2. Left-hand side closure of Tait Tangle of Grid Graph 𝐺2,3

Thus, having only taken into account the identifications of the LHS, we produce an immediate upper

bound on the number of components of 𝐷 (𝐺𝑚,𝑛) :

#𝐶 (𝐷 (𝐺𝑚,𝑛)) ≤ 𝑚 + 1.

Further, we note that

(1) This maximum is achieved for some𝑚,𝑛: e.g. #𝐶 (𝐺3,3) = 4 and

(2) the inequality is not equality for all𝑚,𝑛: e.g. #𝐶 (𝐺3,4) = 1

This second fact should be apparent by considering the equivalence relations further imposed on the

2𝑚 + 2 arcs by the right-hand side of 𝜏 (𝐺𝑚,𝑛). For instance, notice that the identifications of arcs on the

RHS of 𝜏 (𝐺2,3) in 𝐷 (𝐺2,3) reduce𝑚 + 1 equivalence classes to a single equivalence class in Figure 3.3.

Figure 3.3. Caption

Seeing that RHS closure of the Tait Tangle can reduce the number of components of the Tait Diagram ,

we need a way need a way to predict the ordering of the output arcs on the RHS for a given 𝑛. Doing so

will enable us to count further identifications of our distinct arcs.

Thankfully, the second advantage of defining the Tait Tangle is that the addition of a column to 𝐺𝑚,𝑛

permutes the arcs on the RHS of the Tait Tangle in a regular way. Thus, the problem is totally combinatorial.

If we can figure out how the RHS arcs permute from 𝜏 (𝐺𝑚,𝑛) to 𝜏 (𝐺𝑚,𝑛+1), we can start with the output

arcs of 𝜏 (𝐺𝑚,1) and predict the ordering of the output arcs for any 𝑛. Given that ordering, the RHS closure

operation identifies arcs in pairs, possibly reducing the number of distinct equivalence classes.

To show how the addition of a column corresponds to a fixed permutation on the RHS arcs, one can

notice the ordering of the arcs on the RHS of 𝜏 (𝐺2,3), 𝜏 (𝐺2,4), and 𝜏 (𝐺2,5) in Figure 3.4.

We describe this permutation and formalize our observations in the construction of the graph 𝐻𝑥,𝑦𝑛

associated to 𝐷 (𝐺𝑚,𝑛) in the following section.
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Figure 3.4. Each additional column of the grid graph permutes the RHS arcs

3.2. The Graph 𝐻𝑥,𝑦𝑛 .

For a given𝑚, let

𝑥 = (1 2) (3 4) . . . (2𝑚 + 1 2𝑚 + 2) ∈ 𝑆2𝑚+2

The entries in each transposition of 𝑥 are the labellings of the arcs of the Tait Tangle which are identified

on the LHS of the Tait Diagram. That is 𝑥𝑖 , 𝑥
′
𝑖 appear in a transposition of 𝑥 iff the arcs 𝑥𝑖 and 𝑥 ′𝑖 are in

the same equivalence class after the closure operation is performed on the LHS of the Tait Tangle. This is

simply a restatement of the observations of the previous section. In fact, our remark that the LHS closure

yielded an upper bound of𝑚 + 1 components is evident in there being𝑚 + 1 cycles of 𝑥 .

For a similar description of the RHS arcs of 𝜏 (𝐺𝑚,𝑛), we have the fixed-point-free involution

𝑦𝑛 = 𝜎𝑛+1𝑥𝜎−𝑛−1

where

𝜎 = (1 3 5 . . . 2𝑚 + 1 2𝑚 + 2 2𝑚 . . . 6 4 2).
Again, transpositions of 𝑦𝑛 have as entries arcs which are identified on the RHS of the Tait Diagram.

This description of 𝑦𝑛 demonstrates the correspondence of additional columns of 𝐺𝑚,𝑛 with permuta-

tions of RHS arcs: an additional column corresponds to conjugation by 𝜎.

For an example, take 𝜏 (𝐺2,3), as shown in Figure 3.4.

The RHS arcs of 𝜏 (𝐺2,3) are identified by the transpositions of

𝑦3 = 𝜎4𝑥𝜎−1

= (1 3 5 6 4 2)4(1 2) (3 4) (5 6) (2 4 6 5 3 1)4

= (6 4) (5 2) (3 1)

and the RHS arcs of 𝜏 (𝐺2,4) by
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𝑦4 = 𝜎5𝑥𝜎−5

= 𝜎𝑦3𝜎
−1

= (1 3 5 6 4 2) (6 4) (5 2) (3 1) (2 4 6 5 3 1)
= (4 2) (6 1) (5 3) .

We will now use the fixed-point-free involutions 𝑥,𝑦𝑛 to define a graph which captures information

about the link components of 𝐷 (𝐺𝑚,𝑛)

Definition. Let𝐻𝑥,𝑦𝑛 be the graph on 2𝑚+2 labelled vertices with an edge between vertices which appear
in the same transposition of either 𝑥 or 𝑦𝑛 .

For example, for grid graph 𝐺3,1, we have

𝑥 = (1 2) (3 4) (5 6) (7 8),
and

𝑦1 = (1 3 5 7 8 6 4 2)2(1 2) (3 4) (5 6) (7 8) (2 4 6 8 7 5 3 1)2

= (1 7) (2 8) (3 5) (4 6) .

Then the graph 𝐻𝑥,𝑦1 corresponding to 𝐷 (𝐺3,1) is

Red edges correspond to the identification of arcs on the LHS of 𝜏 (𝐺𝑚,𝑛), encoded by the transpositions
of 𝑥 . Blue edges correspond to identifications of arcs on the RHS, encoded by transpositions of 𝑦𝑛 .

3.3. Equality 1. By analyzing definition of 𝐻𝑥,𝑦𝑛 , our first equality falls out.

Claim.
#𝐶 (𝐻𝑥,𝑦𝑛 ) = #𝐶 (𝐷 (𝐺𝑚,𝑛)) .

By definition, there’s a bijection between

{vertices of 𝐻𝑥,𝑦𝑛 } ↔ {arcs of 𝜏 (𝐺𝑚,𝑛)},

a bijection between

{edges of 𝐻𝑥,𝑦𝑛 } ↔ {identification of arcs of 𝜏 (𝐺𝑚,𝑛) in 𝐷 (𝐺𝑚,𝑛)},

and thusly between

{components of 𝐻𝑥,𝑦𝑛 } ↔ {components of 𝐷 (𝐺𝑚,𝑛)}.
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3.4. Equality 2. Our second equality relates the number of connected components of the graph𝐻𝑥,𝑦𝑛 with

the number of disjoint cycles in the cyclic decomposition of the product of the fixed-point-free involutions

𝑥𝑦𝑛 .

Proposition 1. For every connected component of𝐻𝑥,𝑦𝑛 , there are two disjoint cycles in the cycle decom-

position of 𝑥𝑦𝑛 .

That is,

#𝐶 (𝐻𝑥,𝑦𝑛 ) =
𝑙 (𝑥𝑦𝑛)

2

,

where 𝑙 (𝜎) denotes the number of disjoint cycles in the cycle decomposition of the permutation 𝜎.

Proof. Let 𝐶 ⊂ 𝐻𝑥,𝑦𝑛 be a connected component of 𝐻𝑥,𝑦𝑛 . We note that 𝐶 is a cycle graph, though we will

not appeal to this fact in our argument.

Let 𝑥𝐶 , 𝑦𝐶𝑛 ∈ 𝑆2𝑚+2 be the subpermutations of 𝑥,𝑦𝑛 with transpositions containing all 𝑗 ∈ 𝑉 (𝐶) .
That is,

𝑥𝐶 = (𝑥1 𝑥2) (𝑥3 𝑥4) . . . (𝑥2𝑘−1 𝑥2𝑘 ),

𝑦𝐶𝑛 = (𝑦1 𝑦2) (𝑦3 𝑦4) . . . (𝑦2𝑘−1 𝑦2𝑘 )
where 𝑉 (𝐶) ⊂ {𝑥𝑖}2𝑘𝑖=1, 𝑉 (𝐶) ⊂ {𝑦𝑖}2𝑘𝑖=1.

We argue that 𝑉 (𝐶) = {𝑥𝑖}2𝑘𝑖=1 = {𝑦𝑖}2𝑘𝑖=1 by showing the reverse inclusion.

To show that 𝑉 (𝐶) ⊃ {𝑥𝑖}2𝑘𝑖=1, we ask if it were possible that an entry 𝑥𝑖 ∈ 𝑉 (𝐶) which appears in a

transposition (𝑥𝑖 𝑥 ′𝑖 ) of 𝑥𝐶 could have 𝑥 ′𝑖 ∉ 𝑉 (𝐶).
By definition of 𝐻𝑥,𝑦𝑛 , the vertex labelled 𝑥𝑖 has an edge connecting it to 𝑥 ′𝑖 , meaning 𝑥 ′𝑖 is part of the

same connected component as 𝑥𝑖 in the graph 𝐻𝑥,𝑦𝑛 and thus 𝑥 ′𝑖 ∈ 𝑉 (𝐶) . (The same argument holds for an

entry of 𝑦𝑖 , which shows that 𝑉 (𝐶) = {𝑥𝑖} = {𝑦𝑖}.)

Now that we are happy with the definition of 𝑥𝐶 , 𝑦𝐶𝑛 , we prove the claim.

We write

𝑥𝐶 = (𝑥1 𝑥2) (𝑥3 𝑥4) . . . (𝑥2𝑘−1 𝑥2𝑘 )

𝑦𝐶𝑛 = (𝑦1 𝑦2) (𝑦3 𝑦4) . . . (𝑦2𝑘−1 𝑦2𝑘 )
and compare the cycles of 𝑥𝑛, 𝑦

𝐶
𝑛 .

There are two cases:

• Repeated Cycle: If for any 𝑖, 𝑗 ∈ [2𝑘], (𝑥𝑖 𝑥𝑖+1) = (𝑦 𝑗 𝑦 𝑗+1), then

𝑥𝐶 = 𝑦𝐶𝑛 = (𝑥𝑖 𝑥𝑖+1) = (𝑦 𝑗 𝑦 𝑗+1) .

In this case, 𝐶 is a length-two cycle graph, and

𝑥𝑛𝑦
𝐶
𝑛 = (𝑥𝑖) (𝑥𝑖+1) .

Thus, consistent with what we intended to show, 𝑙 (𝑥𝐶𝑦𝐶𝑛 ) = 2. The connected component 𝐶 is

in 1 : 2 correspondence with the number of disjoint cycles in the product 𝑥𝐶𝑦𝐶𝑛 .
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• Distinct Cycles: If 𝑥𝐶 , 𝑦𝐶𝑛 do not share a transposition, then for any transposition (𝑦𝑖 𝑦𝑖+1) of 𝑦𝐶𝑛

𝑥𝐶 (𝑦𝐶𝑛 (𝑦𝑖)) = 𝑥𝐶 (𝑦𝑖+1) and 𝑥𝐶 (𝑦𝐶𝑛 (𝑦𝑖+1)) = 𝑥𝐶 (𝑦𝑖),
but

𝑥𝐶 (𝑦𝑖+1) ≠ 𝑥𝐶 (𝑦𝑖)
since 𝑥𝐶 is injective.

Then, we note that since 𝑥𝐶 , 𝑦𝐶𝑛 do not share a cycle,

(𝑥𝐶 ◦ 𝑦𝐶𝑛 )𝑛 (𝑦1) ≠ (𝑥𝐶 ◦ 𝑦𝐶𝑛 )𝑖 (𝑦1)

for all 𝑖 ≠ 𝑛 < 𝑘.The argument relies only on the facts that 1) 𝑥𝐶 and𝑦𝐶𝑛 do not share any cycles,

and that 2) 𝑥𝐶 , 𝑦𝐶𝑛 are fixed-point-free involutions.

Thus, the product 𝑥𝐶𝑦𝐶𝑛 has a cycle decomposition into the orbit of 𝑦1 and the orbit of 𝑦2 under

(𝑥𝐶 ◦ 𝑦𝐶𝑛 ); i.e.

𝑥𝐶𝑦𝐶𝑛 =

(
𝑦1 (𝑥𝐶 ◦ 𝑦𝐶𝑛 ) (𝑦1) . . . (𝑥𝐶 ◦ 𝑦𝐶𝑛 )𝑘−1(𝑦1)

) (
𝑦2 (𝑥𝐶 ◦ 𝑦𝐶𝑛 ) (𝑦2) . . . (𝑥𝐶 ◦ 𝑦𝐶𝑛 )𝑘−1(𝑦2)

)
.

We conclude that the connected component𝐶 is again in 1 : 2 correspondence with the number

of disjoint cycles in the product 𝑥𝐶𝑦𝐶𝑛 .

Summing over the connected components in 𝐺𝑥,𝑦𝑛 , we retrieve our result:

#𝐶 (𝐻𝑥,𝑦𝑛 ) =
𝑙 (𝑥𝑦𝑛)

2

.

□

3.5. Equality 3. Thus, we have only one final equality to prove to complete our proof.

#𝐶 (𝐷 (𝐺𝑚,𝑛)) = #𝐶 (𝐺𝑥,𝑦𝑛 ) =
𝑙 (𝑥𝑦𝑛)

2

= gcd(𝑚 + 1, 𝑛 + 1)

Proposition 2.
𝑙 (𝑥𝑦𝑛)

2

= gcd(𝑚 + 1, 𝑛 + 1)

Proof. We recall that 𝑥 = (1 2) (3 4) . . . (2𝑚 + 1 2𝑚 + 2) and

𝑦𝑛 = 𝜎𝑛+1𝑥𝜎−𝑛−1

where

𝜎 = (1 3 5 . . . 2𝑚 + 1 2𝑚 + 2 2𝑚 . . . 6 4 2) .
We analyze the product 𝑥𝑦𝑛 = 𝑥𝜎𝑛+1𝑥𝜎−𝑛−1

.

First, we observe that 𝑥𝜎𝑥 = 𝜎−1
:

𝑥𝜎𝑥 = (1 2) (3 4) . . . (2𝑚 + 1 2𝑚 + 2) (1 3 5 . . . 2𝑚 + 1 2𝑚 + 2 2𝑚 . . . 4 2) (1 2) (3 4) . . . (2𝑚 + 1 2𝑚 + 2)
= (𝑥 (1) 𝑥 (3) 𝑥 (5) . . . 𝑥 (2𝑚 + 1) 𝑥 (2𝑚 + 2) 𝑥 (2𝑚) . . . 𝑥 (4) 𝑥 (2))
= (2 4 6 . . . 2𝑚 + 2 2𝑚 + 1 2𝑚 − 1 . . . 3 1)
= 𝜎−1

Then,

(𝑥𝜎𝑥)𝑛 = (𝜎−1)𝑛 = 𝜎−𝑛 .
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Therefore

𝑥𝑦𝑛 = 𝑥𝜎𝑛+1𝑥𝜎−𝑛−1

= (𝑥𝜎𝑥)𝑛+1𝜎−𝑛−1

= 𝜎−𝑛−1𝜎−𝑛−1

= 𝜎−2𝑛−2.

Since we know that 𝑙 (𝑥𝑦𝑛) = 𝑙 (𝜎−2𝑛−2) = 2#𝐶 (𝐻𝑥,𝑦𝑛 ), we need only find the number of disjoint cycles

in the cycle decomposition of 𝜎−2𝑛−2. For that, we have the following lemma.

Lemma. Let 𝜎 be an𝑚 cycle. Then 𝑙 (𝜎𝑘 ) = gcd(𝑚,𝑘) .

Proof. We write

𝜎 = (𝑠0 𝑠1 𝑠2 . . . 𝑠𝑚−1)
and notice that 𝜎𝑘 (𝑠𝑖) = 𝑠 [𝑖+𝑘 ]𝑚 where by [𝑛]𝑚 we denote the canonical representative of 𝑛 in Z/𝑚Z.

For any entry 𝑠𝑖 of 𝜎 , the (finite length) disjoint cycle in the cycle decomposition of 𝜎𝑘 containing 𝑠𝑖 is

of the form

(𝑠𝑖 𝜎𝑘 (𝑠𝑖) 𝜎2𝑘 (𝑠𝑖) . . . ) = (𝑠𝑖 𝑠 [𝑖+𝑘 ]𝑚 𝑠 [𝑖+2𝑘 ]𝑚 . . . ) .
We naturally identify this cycle with a ⟨[𝑘]⟩-cosets of Z/𝑚Z,

𝑖 + ⟨[𝑘]⟩ = {𝑖, 𝑖 + 𝑘, 𝑖 + 2𝑘 . . . }.
Thus, to count the number of disjoint cycles of 𝜎𝑘 , we need to count the number of such ⟨[𝑘]⟩-cosets of

Z/𝑚Z; that is, find [Z/𝑚Z : ⟨[𝑘]⟩] .
By Lagrange’s Theorem,

[Z/𝑚Z : ⟨[𝑘]⟩] = |Z/𝑚Z|
|⟨[𝑘]⟩|

=
𝑚

|⟨[𝑘]⟩|.
What is |⟨[𝑘]⟩|? Well, the unique elements of ⟨[𝑘]⟩ look like

{[𝑘], [2𝑘], [3𝑘], . . . , [𝑙𝑘]}
where 𝑙 is the least integer such that𝑚 | 𝑙𝑘 . Thus, 𝑙 = lcm(𝑚,𝑘) by definition, and |⟨[𝑘]⟩| = lcm(𝑚,𝑘 )

𝑘
.

We compute

[Z/𝑚Z : ⟨[𝑘]⟩] = 𝑚

|⟨[𝑘]⟩|
=

𝑚

lcm(𝑚,𝑘)/𝑘

=
𝑚𝑘

lcm(𝑚,𝑘)
= gcd(𝑚,𝑘) .

□

Applying this lemma to our original statement, we have that 𝜎 is a 2𝑚 + 2-cycle, so

𝑙 (𝜎−2𝑛−2) = 𝑙 (𝜎2𝑛+2) = gcd(2𝑚 + 2, 2𝑛 + 2) = 2 gcd(𝑚 + 1, 𝑛 + 1).
So we have that

𝑙 (𝑥𝑦𝑛) = 𝑙 (𝜎−2𝑛−2) = 2 gcd(𝑚 + 1, 𝑛 + 1).
9
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This proves our final equality in the chain

#𝐶 (𝐷 (𝐺𝑚,𝑛)) = #𝐶 (𝐺𝑥,𝑦𝑛 ) =
𝑙 (𝑥𝑦𝑛)

2

= gcd(𝑚 + 1, 𝑛 + 1),
and in doing so, proves that

#𝐶 (𝐷 (𝐺𝑚,𝑛)) = gcd(𝑚 + 1, 𝑛 + 1).
□
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Remark (Nonalternating Tait Diagrams). Expanding upon the method of constructing link diagrams from
planar graphs, we can in fact produce all link diagrams via a similar algorithm to the one given before. This
detail is not particularly useful for answering the main question of this write-up, but good to know.

Let 𝐺 be a planar graph and let 𝜖 : 𝐸 (𝐺) → {−1, 1} a function. We call (𝐺, 𝜖) a signed graph, which can
be regarded as the planar graph 𝐺 with edges decorated by either (+) or (−).

To form the Tait Diagram of a signed graph, we again associate a crossing of 𝐷 (𝐺) with each edge of the
graph 𝐺 .

• To each (+)-decorated edge, we associate a crossing of 𝐷 (𝐺) as before.
• To each (−)-decorated edge, we form the opposite crossing; i.e. our undercrossing is placed along the
NE-SW axis and our overcrossing along the NW-SE axis.

• The arcs of these crossings are connected to neighboring arcs as before, though this construction may
result in non-alternating diagrams.

11
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Figure 3.5. Tait Diagram of Signed Planar Graph

This construction actually yields a one-to-one correspondence

{Signed Planar Graphs ↔ {Link Diagrams}.
In particular, there is an also an explicit algorithm for constructing a signed planar graph from an link

diagram. See [prz] for more.
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