
USING FIBONACCI NUMBERS AND CHEBYSHEV POLYNOMIALS TO
EXPRESS FOX COLORING GROUPS AND ALEXANDER-BURAU-FOX

MODULES OF DIAGRAMS OF WHEEL GRAPHS
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Abstract. In this paper we compute the Reduced Fox Coloring Group of the diagrams of
Wheel Graphs which can also be represented at the closure of the braids (σ1σ

−1
2 )n. In doing

so, we utilize Fibonacci numbers and their properties.
Following this, we generalize our result to compute the Alexander-Burau-Fox Module

over the ring Z[t±1] for the same class of links. In our computation, Chebyshev polynomials
function as a generalization of Fibonacci Numbers.
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1. Introduction

In this section we introduce the Tait Diagram of a plane graph. We then recall the
definition of Fox n-colorings and of the Fox Coloring Group of a link (the universal object
for Fox Colorings). Then, we formulate our main result about the structure of Fox Coloring
Groups.

In the second section, we prove our main result about Fox Colorings by working with the
matrix of relations for the Fox Group using the properties of Fibonacci numbers.

In the third section, we recall the definition of the Alexander-Burau-Fox Module over the
ring Z[t±1]. This module is a generalization of our Fox Coloring Group. We describe the
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structure of the ABF Module for the same family of links considered in section one and two,
and express it as the sum of two cyclic modules.

In the fourth section, we mention the relation with Plan’s Theorem on branch covers of
links. We also relate our results to those of Minkus and Mulazzani-Vesnin.

We now present some basic definitions.

Definition 1.1. For a plane graph G, we associate an alternating link diagram as follows:

(1) Every edge is replaced by a crossing as illustrated in Figure 1.
(2) We connect the “loose endpoints” of the crossing along the edges; compare Figure 3.

Figure 1. Crossing from an edge

Definition 1.2. We define a Fox n-coloring of a diagram D to be a function

f : arcs(D) → Zn

such that every arc is “colored” by an element of Zn with the following condition: for every
crossing with arcs a, b, and c, 2b − a − c ≡ 0 mod n for overarc b. That is, each crossing
has the relation

Figure 2. Coloring of a crossing

The n-colorings of a diagram D form a group denoted by Coln(D).
If f(ai) = f(aj) for all ai, aj ∈ arcs(D), we call f a trivial coloring. These trivial colorings

form the subgroup Coltrivialn (D) ∼= Zn ∈ Coln(D) and the quotient Coln(D)/Coltrivialn (D) is
called the Reduced Group of Fox n-colorings denoted by Colredn (D).

Definition 1.3. An arc is the part of a diagram from undercrossing to undercrossing. We
also include in our definition components without a crossing.

The number of arcs is equal to the number of crossing plus the number of trivial compo-
nents of the diagram.
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Definition 1.4. The group Col(D) is the abelian group whose generators are indexed by the
arcs of D. The set of arcs is denoted by arcs(D) and the set of generators is denoted by
Arcs(D). The relations at each crossing of D are given by 2b − a − c = 0 where a, b, c ∈
Arcs(D). That is,

Col(D) = {Arcs(D) |
b

b c = 2b− a

a

, where a, b, c ∈ Arcs(D)}

The Fox Coloring Group can be also defined for tangles in a similar way. In particular
for braids(for n braids treated as n-tangles), the group Col(T ) is freely generated by the top
arcs of the braid. We will use this later in the proof of Theorem 1.6.

Definition 1.5. Let Coltrivial(D) ≤ Col(D) be the infinite cyclic subgroup generated by the
element

∑
ai∈Arcs(D) ai. This subgroup is isomorphic to Z and is called the group of trivial

colorings of D.

The quotient group
Col(D)

Coltrivial(D)
is called the reduced group of Fox colorings.1 We

denote it by Colred(D). That is,

Colred(D) = {Arcs(D) |
b

b c = 2b− a

a

,
∑

ai∈Arcs(D)

ai = 0},

where the sum is taken over all arcs of D.

More information about Fox Colorings can be found in [Prz1, PBIMW].
We are now ready to formulate the main theorem of the second section, expressing the

Reduced Fox Coloring Group using Fibonacci numbers.

Theorem 1.6. Let Fk be the Fibonacci sequence defined by

F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk.

Let Dn be the closure of the braid (σ1σ
−1
2 )n, that is, Dn = D(Wn) as in Figure 3. Then

Colred(Dn) =

{
ZFn−1+Fn+1 ⊕ ZFn−1+Fn+1 when n is odd,
Z5Fn ⊕ ZFn when n is even

In particular, for n = 2, 3, 4, 5, 6, 7, we have Z5, Z4 ⊕ Z4, Z15 ⊕ Z3, Z11 ⊕ Z11, Z40 ⊕ Z8,
and Z29 ⊕ Z29, respectively.

2. Fibonacci numbers and reduced coloring group of wheel graphs, Col(D)

After a few preliminaries, we turn to a proof of Theorem 1.6.
The Tait diagram of a planar graph has a determinant equal to the number of spanning

trees of the graph. For wheel graphs in particular, the number of spanning trees was com-
puted in [Sed, Mye]. For our purposes, the determinant is equal to the order of the Reduced
Fox Coloring Group. If the determinant is zero, which may only occur in the case of links,
then it may result in infinite order.

1The group Colred(D) can be interpreted as the first homology of the double branch covering of S3

branched along D; see [Prz1]. The group Colred(D) can also be computed by the Goeritz matrix of the
diagram. Using this approach, the determinant of Dn is computed in [Prz2].
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In the second section of the paper, we obtain concise formulas, using Fibonacci numbers,
for the Fox-Coloring Group of diagrams obtained from wheel graphs, which can also be
expressed as the closure of 3-braids of the form (σ1σ

−1
2 )n where n is the number of spokes in

the corresponding wheel graph; compare Figure 3.

Figure 3. Wheel graph W7 and its Tait diagram, D7 = D(W7) representing
the closure of the braid (σ1σ

−1
2 )7.

The proof is comprised of several propositions and lemmas.

Proposition 2.1. Consider an arbitrary 3-braid B and label the top arcs by a, b and c and
the bottom arcs by a′, b′, and c′, which are uniquely defined by a, b and c.

(1) In the Fox Coloring Group of this 3-braid, our arcs satisfy the equation (a′ − a) −
(b′ − b) + (c′ − c) = 0.

(2) Recall that a, b and c form a basis of Col(B) and we can change the basis to b, b− a
and b− c. Then a′ − a, b′ − b, and c′ − c are linear combinations of b− a and b− c.

Proof. The proposition is well-known and can be proven by the induction on the number of
crossings, see e.g [DJP]. □

To simplify notation, let x = b − a and y = b − c. Let B̂ be the closure of B, then
Col(B̂) = {b, x, y | a′ − a, c′ − c}. Notice that by Proposition 2.1, a′ − a and c′ − c is
a linear combination of x and y.2 Let a′ − a = PB = PB(x, y) = P x

B · x + P y
B · y and

c′ − c = QB = QB(x, y) = Qx
B · x+Qy

B · y.
The matrix of relations for Colred(B̂) is a 2× 2 matrix[

P x
B P y

B

Qx
B Qy

B

]
.

Now we work with B = (σ1σ
−1
2 )n and B̂ = D(Wn). Therefore, we use notation PB = Pn

and QB = Qn.
The following lemmas are illustrated by Figure 4.

2The fact that x and y generate Colred can be easily proved by linear induction. There is a general fact,
see e.g. [DJP] that if we consider a general n-tangle, T with boundary points denoted by x1, x2, ..., x2n

(variable indexed by endpoints) then the relation
∑2n

i=1(−1)ixi = 0 holds in Col(T ). In particular elements
xi − xi+1 generate Colred(T ) group.
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Figure 4. Labeling part of (σ1σ
−1
2 )n

Lemma 2.2. (1) Pn+1 = Pn +Qn + b− a = Pn +Qn + x; thus Qn = Pn+1 − Pn − x.

(2) Qn+1 = 2Pn+1 − Pn + a − c = 2Pn+1 − Pn + y − x
(1)
= Pn+1 + Qn + y; thus Pn+1 =

Qn+1 −Qn − y.

Thus we can deduce recursive formulas for Pn and Qn.

Lemma 2.3. (Rec1) Pn+2
(1)
= Pn+1 +Qn+1 + x

(2)
= 3Pn+1 − Pn + y.

(Rec2) Qn+2
(2)
= Pn+2 +Qn+1 + y

(1)
= Pn+1 + 2Qn+1 + x+ y

(2)
= 3Qn+1 −Qn + x.

Then using the notation Pn = P x
n · x + P y

n · y and Qn = Qx
n · x + Qy

n · y we recognize P x
n

and Qy
n as Chebyshev polynomials as follows:

Lemma 2.4. (I) P x
n+2 = 3P x

n+1 − P x
n with P x

0 = 0, P x
1 = 1, P x

2 = 3, ...
Thus P x

n+1 = Sn(3) where Sn(z) denotes the Chebyshev polynomial of the second kind.
That is S0(z) = 1, S1(z) = z, and Sn+2(z) = zSn+1(z)− Sn(z). Compare Section 3.1.
Qy

n+2 = 3Qy
n+1 −Qy

n with Qy
0 = 0, Qy

1 = 1, Qy
2 = 3, ...

Therefore, Qy
n+1 = P x

n+1 = Sn(3).

(II) P y
n+2 = 3P y

n+1 − P y
n + 1 with P y

0 = 0, P y
1 = 0, P y

2 = 1, ...
Similarly, Qx

n+2 = 3Qx
n+1 −Qx

n + 1 with Qx
0 = 0, Qx

1 = 0, Qx
2 = 1, ...

Therefore we have P y
n+1 = Qx

n = P x
n+1 − P x

n − 1 = Sn(3)− Sn−1(3)− 1.

Let Fk be the Fibonacci sequence defined by F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk. It
relates to Chebyshev polynomial as follows:

Lemma 2.5. We have F2n = Sn−1(3).

Proof. F2n = F2n−1+F2n−2 = 2F2n−2+F2n−3 = 3F2n−2−F2n−4. Thus F2n and Sn−1(3) satisfy
the same recursive relation. Noting that F2 = 1 = S0(3) and F4 = 3 = S1(3) we conclude
the lemma. □

The main result of this section can be expressed using Fibonacci number as follows:
5



Theorem 2.6. Let Dn be the closure of the braid (σ1σ
−1
2 )n

Then:

Colred(Dn) =

{
ZFn−1+Fn+1 ⊕ ZFn−1+Fn+1 when n is odd,
Z5Fn ⊕ ZFn when n is even

The sums Fn−1 + Fn+1 are called Lucas numbers denoted by Ln. That is L0 = 2, L1 =
1, L2 = 3, L3 = 4, L4 = 7, ... and Ln+2 = Ln+1 + Ln.
We divide the proof of Theorem 2.6 into three lemmas.

Lemma 2.7. The matrix of relations for Colred(Dn) is

A2n =

[
F2n F2n−1 − 1
F2n+1 − 1 F2n

]
Proof. From Lemma 2.3, we know Colred(Dn)=

[
P x
n P y

n

Qx
n Qy

n

]
=

[
P x
n P x

n − P x
n−1 − 1

P x
n+1 − P x

n − 1 P x
n

]
.

Now by Lemma 2.4, P x
n −P x

n−1−1 = Sn−1(3)−Sn−2(3)−1 = F2n−F2n−2−1 = F2n−1−1.
Therefore P x

n+1 − P x
n − 1 = F2n+2 − F2n − 1 = F2n+1 − 1.

Hence, Colred(Dn) =

[
F2n F2n−1 − 1
F2n+1 − 1 F2n

]
. We denote this matrix A2n.

□

Lemma 2.8. Colred(Dn) = ZFn−1+Fn+1 ⊕ ZFn−1+Fn+1 when n is odd.

Proof. (1) We replace the first column in A2n by the difference of the first and the second
column to get:

A2n−1 =

[
F2n−2 + 1 F2n−1 − 1
F2n−1 − 1 F2n

]
(2) We replace the second column in A2n−1 by the difference of the second column and

the first column to get:

A2n−2 =

[
F2n−2 + 1 F2n−3 − 2
F2n−1 − 1 F2n−2 + 1

]
We generalize (1) and (2) to arbitrary number of column operations (with the same pattern

of operations):
After performing k operations of (1) and (2), we get

A2n−2k =

[
F2n−2k + F2k F2n−(2k+1) − F2k+1

F2n−(2k−1) − F(2k−1) F2n−2k + F2k

]
Since n is odd, let k = n+1

2
; then we have:

An−1 =

[
Fn−1 + Fn+1 Fn−2 − Fn+2

0 Fn−1 + Fn+1

]
Hence, the gcd of Colred(D) (that is, the gcd of entries of the matix) is Fn−1 + Fn+1 and

detAn−1 = (Fn−1 + Fn+1)
2. Therefore Colred(Dn) = ZFn−1+Fn+1 ⊕ ZFn−1+Fn+1 for n odd. 3

3We use the standard fact that for Z modules given by 2x2 matrix[
a b
c d

]
.

The related abelian group is equal to Zd/g⊕Zg where d is the determinant of the matrix and g is gcd(a, b, c, d).
6



□

Lemma 2.9. Colred(Dn) = Z5Fn ⊕ ZFn when n is even.

Proof. Let k = n
2
and use the proof of Lemma 2.8.

Then we have: An =

[
2Fn Fn−1 − Fn+1

Fn+1 − Fn−1 2Fn

]
=

[
2Fn −Fn

Fn 2Fn

]
Adding twice the last column of the An to the first, we get:

[
0 −Fn

5Fn 2Fn

]
.

Here the gcd of Colred(D) is Fn and |Colred(D)| = 5F 2
n . Thus we have Colred(Dn) =

Z5Fn ⊕ ZFn for n even.
□

Remark 2.10. In [Prz2] the Goeritz matrix of D(Wn) was reduced to[
Sn−1(3) 1− Sn(3)
Sn−2(3) + 1 −Sn−1(3)

]
To show that the group it presents is the same as before, we multiply the last column by

−1 and use the equality Sn−1(3) = F2n, to get:[
F2n F2n+2 − 1
F2n−2 + 1 F2n

]
=

[
F2n F2n+1 + F2n − 1
F2n−2 + 1 F2n−1 + F2n−2

]
After a column operation we get the matrix[

F2n F2n+1 − 1
F2n−2 + 1 F2n−1 − 1

]
=

[
F2n−1 + F2n−2 F2n + F2n−1 − 1
F2n−2 + 1 F2n−1 − 1

]
After a row operation we get the matrix[

F2n−1 − 1 F2n − 1
F2n−2 + 1 F2n−1 − 1

]
which is the matrix considered in (1) above with row exchanged so leading to the same abelian
group as A2n

7



Remark 2.11. We can deduce several formulas from our column reductions. For example

F2n = Fn(Fn−1 + Fn+1).

and

F2n−1 − 1 =

{
Fn(Fn−2 + Fn) for n even

Fn−1(Fn−1 + Fn+1) for n odd

The identities in Corollary 2.11 are well known; e.g. they follow from identities in [Koshy]
page 97. In particular, F2n = Fn(Fn−1 + Fn+1) is exactly identity 54 of [Koshy].4 Thomas
Koshy mentions that the identities follow directly from closed forms for Fn and Ln. We
present the proof for completeness. We consider roots of the polynomial x2 − x− 1 = 0 say
α and β, and note that

Fn =
αn − βn

α− β
and Ln = αn + βn.

We have α = 1+
√
5

2
, β = −α−1 = 1−

√
5

2
, α − β =

√
5. Our identities can be expressed as

product to sum formulas (using F−k = (−1)k+1Fk):

Proposition 2.12.

Fm(Fn−1 + Fn+1) = FmLn = Fm+n + (−1)nFm−n = Fm+n − (−1)mFn−m.

Proof.

FmLn =
(αm − βm)(αn + βn)

α− β

=
αm+n − βm+n + αmβn − αnβn

α− β

=
αm+n − βm+n + (−1)n(αm−n − βm−n)

α− β

= Fm+n + (−1)nFm−n.

□

4There are also the following related identities:

Identity 52: F2m+n − (−1)mFn = FmLm+n,

Identity 53: F2m+n + (−1)mFn = Fm+nLm,

8



3. Alexander-Burau-Fox matrix of a link diagram

In this chapter we generalize our main result of the second section from the Fox group
of colorings to the Alexander-Burau-Fox module over the ring Z[t±1]. Where the Fibonacci
numbers appeared in the computation of the the Fox Coloring Group, the analogous combina-
torial object appearing in the computation of the ABF Module is the Chebyshev Polynomial
of the second kind. The modules we study are Alexander modules of links [Ale] in a form
which can be deduced from the Burau representation of braids [Burau, Bur-Z]. These module
directly generalize to the group of Fox colorings where we replace −1 by t.

The formal definition of the ABF Module follows (notice that for t = −1, we get Definition
1.4).

Definition 3.1. Let D be an oriented link diagram. The Z[t±1]-module ABF (D) has a
presentation where generators are indexed by the arcs of D, denoted by Arcs(D), and whose
relations are given by crossings of D (positive and negative) as follows

Figure 5. ABF Module Relations

That is,

ABFn(D) = {Arcs(D) | where a, b, c ∈ Arcs(D)}

Definition 3.2. The Reduced Alexander-Burau-Fox Module is the module

ABFRed
n (D) = {Arcs(D) | ,

∑
ai∈arcs(D)

ai = 0},

where the sum is taken over all arcs of D. Note that this module does eliminates trivial
colorings, which is equivalent to setting one arc, say as equal to zero (removing one generator
and adjusting relations by substituting as = −

∑
ai,i ̸=s ai).

5

5To be precise: the relation
∑

ai∈arcs(D) ai = 0 allows us to replace any other relation so that the

coefficient of as is equal to zero. In this new presentation as can be removed and the presentation has
generators Arcs(D)− as, and in relations we can put as = 0.

9



We now formulate the main result of this section, showing the structure of the ABF module
of the diagrams of wheel graphs. We simplify our notation by calling ABF (D(Wn)) =
Mn(Dn). Notice that the module decomposes as the sum of cyclic modules (even though
Z[t±1] is not a PID), and that for odd n the module is double and for even n it is “almost”
double.

Theorem 3.3. The reduced Alexander-Burau-Fox module of diagrams of wheel graphs Wn

can be expressed as

MRed
n (D(Wn)) =

{
Z[t±1]/(Sk−1 + Sk)⊕ Z[t±1]/(Sk−1 + Sk), when n = 2k + 1
Z[t±1]/(Sk−1)⊕ Z[t±1]/((3− t− t−1)Sk−1) when n = 2k

where z = 1−t−t−1 and Sk(z) is the Chebyshev polynomial of the second kind (see Subsection
3.1)

As before, we label the inputs of our braids a, b, c and the outputs a′, b′, c′; see Figure 6.

Figure 6. Coloring of the tangle

As a special case of the general observation for n-tangles, we have that t2(a′ − a) + t(b′ −
b) + (c′ − c) = 0. Thus b′ − b = −t(a′ − a)− t−1(c′ − c), meaning that the middle color can
be computed from the first and the third.

Now like in the t = −1 case, let the endpoints of (σ1σ
−1
2 )n be a′ = Pn + a on the left and

c′ = Qn+ c on the right. Then b′− b = −tPn− t−1Qn. As mentioned before, comoputing the
Reduced ABF module is equivalent to setting b = 0. Thus, we have that b′ = −tPn− t−1Qn.
Writing Pn = P a

n · a+ P c
n · c and Qn = Qa

n · a+Qc
n · c as before, we see that the matrix of

relations for the Reduced Alexander-Burau-Fox module, denoted An, is analogous to that of
the Reduced Fox Coloring Group:

An =

[
P a
n P c

n

Qa
n Qc

n

]
.

We also produce the following recursive relations, analogous to those found in Section 2.
That is,

10



Lemma 3.4. (1) Pn+1 = −tPn − t−1Qn − a,
(2) Qn+1 = (1− t)Pn+1 + tPn + a− c.

Proof. Considering we work with the reduced ABF Module, we set b = 0. Let b′n denote the
central strand after performing (σ1σ

−1
2 ) n times. By previous observation, b′n = −tPn−t−1Qn.

Then we have Pn+1 + a = b′n, so Pn+1 + a = b′ = −tPn − t−1Qn. This proves (1) as is shown
in Figure 7.

Figure 7. Labeling part of (σ1σ
−1
2 )n in ABF Module

Next, we see that

Qn+1 + c = (1 + t)(−tPn − t−1Qn) + t(Pn + a)

= −tPn − t−1Qn − t2Pn −Qn + tPn + a

= Pn+1 − t(tPn − t−1Qn) + tPn + a

= Pn+1 − tPn+1 + tPn + a

=⇒ Qn+1 = (1− t)Pn+1 + tPn+a.

Thus, (2) is true. □

Immediately from the Lemma 3.8, we can present the matrix of relations An in terms of
P a
n and P c

n by the following lemma.

Lemma 3.5. For Qa
n and Qc

n as defined above,

(1) Qa
n = (1− t)P a

n + tP a
n−1 + 1

(2) Qc
n = (1− t)P c

n + tP c
n−1 − 1

11



Proof. By Lemma 3.4 (2),

Qn = Qa
n · a+Qc

n · c
= (1− t)Pn+1 + tPn + a− c

= (1− t)P a
n · a+ tP a

n−1 · a+ a+ (1− t)P c
n · c+ tP c

n−1 · c− c

= ((1− t)P a
n + tP a

n−1 + 1) · a+ ((1− t)P c
n + tP c

n−1 − 1) · c.

□

Thus, our Alexander-Fox-Burau matrix is

An =

[
P a
n P c

n

Qa
n Qc

n

]
=

[
P a
n P c

n

(1− t)P a
n + tP a

n−1 + 1 (1− t)P c
n + tP c

n−1 − 1

]
.

where z = 1− t− t−1.

The final identity we prove in service of our eventual translation of this matrix into the
language of Chebyshev polynomials is the following:

Lemma 3.6. For P a
n and P c

n we have the following Chebyshev-type recursive relation:

(1) P a
n = zP a

n−1 − P a
n−2 − (1 + t−1)

(2) P c
n = zPn−1 − P c

n−2 + t−1

Proof. Beginning with Lemma 3.8 (1),

Pn = P a
n · a+ P c

n · c
= −tPn−1 − t−1Qn−1 − a

= −tPn−1 − t−1((1− t)Pn−1 + tPn−2 + a− c)− a

= −tPn−1 − t−1Pn−1 + Pn−1 − Pn−2 − t−1a+ t−1c− a

= (1− t− t−1)Pn−1 − Pn−2 − t−1a+ t−1c− a

= (zP a
n−1 − P a

n−2 − t−1 − 1) · a− (zP c
n−1 − P c

n−2 + t−1) · c

□

3.1. Chebyshev Polynomials. We now set about rewriting P a
n and P c

n in terms of Cheby-
shev polynomials using Theorem 3.8, below.

We recall first the definition of Chebyshev Polynomials of the Second Kind.

Definition 3.7. Let

S0(z) = 1,

S1(z) = z, and

Sn(z) = zSn−1(z)− Sn−2(z).

Then Sn(z) is the n-th polynomial of the Second Kind.
Throughout the paper, we evaluate Sn(z) at z = 1 − t − t−1, though we tend to suppress

the notation: Sn(z) → Sn.
12



Theorem 3.8. Let the sequence of polynomials Pn(z, ci) ∈ Z[z, ci] satisfy the recursive rela-
tion Pn = zPn−1 − Pn−2 + ci. Then Pn can be expressed using Chebyshev polynomials Sn(z)
as follows:

Pn = Sn−1P1 − Sn−2P0 +
n−2∑
j=0

Sjcn−j.

Proof. We proceed by induction on n. Let n = 3 be our base case. Then
P3 = zP2 − P1 + c3

= z(zP1 − P0 + c2)− P1 + c3

= z2P1 − zP0 + zc2 − P1 + c3

= (z2 − 1)P1 − zP0 + zc2 + c3

= S2P1 − S1P0 + S0c3 + S1c2

= S2P1 − S1P0 +
1∑

j=0

Sjcn−j.

Assume that the proposition holds for n ≥ 3 up to n− 1.

By inductive hypothesis,

Pn = zPn−1 − Pn−2 + cn

= z(Sn−2P1 − Sn−3P0 +
n−3∑
j=1

Sjcn−1−j)− (Sn−3P1 − Sn−4P0 +
n−4∑
j=0

Sjcn−2−j) + cn

= (zSn−2 − Sn−3)P1 − (zSn−3 − Sn−4)P0 + z
n−3∑
j=0

Sjcn−1−j −
n−4∑
j=0

Sjcn−2−j + cn

= Sn−1P − Sn−2P0 +
n−3∑
j=0

Sjcn−1−j −
n−4∑
j=0

Sjcn−2−j + cn

= Sn−1P − Sn−2P0 + zS0cn−1 +
n−2∑
j=2

Sjcn−j + cn

= Sn−1P − Sn−2P0 + S0cn + S1cn−1 +
n−2∑
j=2

Sjcn−j

= Sn−1P − Sn−2P0 +
n−2∑
j=0

Sjcn−j.

Thus, our identity holds.
□

Thus we can rewrite the recursive relations in Lemma 3.6 with the Corollary 3.9.

Corollary 3.9. (1) P a
n (t) = −Sn−1 − (1 + t−1)

∑n−2
j=0 Sj(z).

(2) P c
n(t) = t−1

∑n−2
j=0 Sj(z) for z = 1− t− t−1.

13



Proof. (1) By Lemma 3.6 (1), P a
n = zP a

n−1 − P a
n−2 − (1 + t−1), so applying Theorem 3.8

with c = −1− t−1 yields the result with initial conditions P a
0 = 0 and P a

1 = −1.
(2) By 3.6 (2), P c

n = zP c
n−1 − P c

n−2 + t−1 with initial conditions P c
0 = 0 and P c

1 = t−1.
□

In the next section, we simply the equation in Corollary 3.9 using Product to Sum formulas
(in fact, we go from sum to product).

3.2. Product to Sum Formulas. Seeking further transformation of An, we provide the
following identities for Chebyshev polynomials, analogous to those given for the Fibonacci
numbers.

Here we let Sn be any Chebyshev polynomial of the second kind, and Tn a Chebyshev
polynomial of the first kind. That is, T0 = 1, T1 = x and Tn = xTn−1−Tn. After substituting
x = p+ p−1 we obtain

Sn =
pn+1 − p−n−1

p− p−1

and

Tn = pn + p−n.

These formulas will be used to prove the following well-known product to sum formulas. We
offer the proof for completeness.

Proposition 3.10. For Sn and Tn as defined above,

(1) TmTn = Tm+n + Tm−n

(2) SmTn = Sm+n + Sm−n

(3) SmSn = Sm+n + Sm+n−2 + ... + Sm−n+2 + Sm−n =
∑m+n

i=m−n,i≡m+n mod 2 Si where the
sum is taken over i with i ≡ m+ n mod 2.

(4) Sn(Sn + Sn−1) = S0 + S1 + ...+ S2n−1 + S2n =
∑2n

i=0 Si.

(5) Sn(Sn + Sn+1) = S0 + S1 + ...+ S2n−1 + S2n + S2n+1 =
∑2n+1

i=0 Si.

Proof. (1): TmTn = (pm + p−m)(pn + p−n) = pm+n + p−m−n + pm−n + pn−m = Tm+n + Tm−n.

(2): SmTn = (pm+1−p−m−1)(pn+p−n)
p−p−1 = (pm+n+1−p−m−n−1)+(pm−n+1−p−m+n−1

p−p−1)
= Tm+n + Tm−n.

(3): We proceed by induction on n, applying (2) repeatedly:
If n = 0 we have SmS0 = Sm and for m = 1, SmS1 = xSm = Sm+1 + Sm−1. Induc-
tive step holds as follows: (assuming m ≥ n ≥ 2): SmSn = Sm(Sn − Sn−2) + SmSn−2 =

SmTn+SmSn−2
(2)
= Sm+n+Sm−n+SmSn−2

ind
= Sm+n+Sm−n+Sm+n−2+Sm+n−4+ ...+Sm−n+2,

as needed.
(4) We use (3) twice for SnSn and for SnSn−1.
(5) We use (3) twice for SnSn and for SnSn+1.

□

The following two corollaries further simplify An.

Corollary 3.11.
n−2∑
j=0

Sj =

{
Sk(Sk + Sk−1) when n = 2k,

Sk−1(Sk−1 + Sk) when n = 2k + 1.

14



Proof. This is a restatement of (4) and (5) from Proposition 3.10. □

Corollary 3.12. (1) S2k = SkSk − Sk−1Sk−1 = (Sk − Sk−1)(Sk + Sk−1)
(2) S2k+1 = SkSk+1 − Sk−1Sk = Sk(Sk+1 − Sk−1).

Proof. (1) By 3.10 (3),

SkSk = S0 + S2 + ...+ S2k

= (S0 + S2 + · · ·+ S2k−2) + S2k

= Sk−1Sk−1 + S2k

So SkSk = Sk−1Sk−1 + S2k implies S2k = SkSk − Sk−1Sk−1.
(2)

SkSk+1 = S1 + S3 + ...+ S2k+1,

□

This allows us to reformulate P a
n and P c

n.

Lemma 3.13.

(1) P a
2k = −Sk−1((Sk + Sk−1) + t−1(Sk−1 + Sk−2))

(2) P a
2k+1 = −(Sk−1 + Sk)(Sk + t−1Sk−1)

(3) P c
2k = t−1Sk−1(Sk−1 + Sk−2)

(4) P c
2k+1 = t−1Sk−1(Sk−1 + Sk)

Proof.

(1) By Corollary 3.9, P a
2k(t) = −S2k−1(z)− (1 + t−1)

∑2k−2
j=0 Sj(z), where z = 1− t− t−1,

as before. Thus,

P a
2k = −S2k−1 − (1 + t−1)

2(k−1)∑
j=0

Sj(z)

= −S2k−1 − (1 + t−1)Sk−1(Sk−1 + Sk−2) Cor. 3.11

= −S2(k−1)+1 − (1 + t−1)Sk−1(Sk−1 + Sk−2)

= −Sk−1(Sk − Sk−2)− (1 + t−1)Sk−1(Sk−1 + Sk−2) Cor. 3.12

= −Sk−1(Sk − Sk−2 + Sk−1 + Sk−2 + t−1Sk−1 + t−1Sk−2)

= −Sk−1((Sk + Sk−1)− t−1(Sk−1 + Sk−2))

15



(2) By Corollary 3.9, P a
2k(t)

−P a
2k+1 = −S2k+1−1 − (1 + t−1)

2k+1−2∑
j=0

Sj(z)

= −S2k − (1 + t−1)Sk−1(Sk−1 + Sk+1) Cor. 3.11

= −(Sk − Sk−1)(Sk + Sk−1)− (1 + t−1)Sk−1(Sk−1 + Sk) Cor. 3.12

= −(Sk + Sk−1)(Sk − Sk−1 + Sk−1 + t−1Sk−1)

= −(Sk + Sk−1)(Sk + t−1Sk−1)

(3) & (4) These follow immediately from Cor 3.11.

□

Now, we present the Alexander-Burau-Fox matrix for closures of the braids of type
(σ1σ

−1
2 )n in full generality.

Proposition 3.14.

An =

[
P a
n P c

n

Qa
n Qc

n

]
=

[
−gn(gn+1 − t−1gn−1) t−1gngn−1

tgngn+1 −gn(gn+1 − tgn−1)

]
where

gn =

{
Sk−1 when n = 2k,
Sk−1 + Sk when n = 2k + 1.

Proof. This follows immediately from Lemma 3.13 and Lemma 3.5. □

3.3. Alexander-Burau-Fox Module. With the explicit presentation of the matrix An

in terms of Chebyshev polynomials from 3.14, we compute the resulting module by row
reduction.

Define

A′
n = An/(−gn) =

[
gn+1 − t−1gn−1 −t−1gn−1

−tgn+1 gn+1 − tgn−1

]
.

One column operation, col1 − col2 → col1, yields

A′
n =

[
gn+1 −t−1gn−1

(−t− 1)gn+1 + tgn−1 gn+1 − tgn−1

]
We multiply the second column by −t:

A′
n =

[
gn+1 gn−1

(−t− 1)gn+1 + tgn−1 −tgn+1 + t2gn−1

]
Specifically for n = 2k + 1, we get

A′
2k+1 =

[
Sk Sk−1

−tSk −tSk + t2Sk−1]

]
.

For n = 2k, we get

A′
2k =

[
Sk−1 + Sk Sk−1 + Sk−2

−t(Sk−1 + Sk) −t(Sk−1 + Sk)− t2(Sk−1 + Sk−2)

]
.
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We will apply the following lemma to A′′
n in order to immediately compute the desired

module.

Lemma 3.15. (1) The pair (Sk, Sk−1) can be reduced by Euclidean algorithm (column
operations) to (S0, S−1) = (1, 0).

(2) The pair (Sk + Sk−1, Sk−1 + Sk−2) can be reduced by Euclidean algorithm (column
operations) to (S1 + S0, S0 + S−1) = (z + 1, 1).

Proof. (1) We notice that (Sk, Sk−1) = (zSk−1 − Sk−2, Sk−1) thus by taking the first column
minus z times the second we get (−Sk−2, Sk−1). Multiplying the first column by −1 we get
(Sk−2, Sk−1) allowing inductive step.
(2) We notice that (Sk +Sk−1, Sk−1 +Sk−2) = (zSk−1 −Sk−2 + zSk−2 −Sk−3, Sk−1 +Sk−2) =
(z(Sk−1+Sk−2)− (Sk−2+Sk−3), Sk−1+Sk−2), thus by taking the first column minus z times
the second we get (−(Sk−2 + Sk−3), Sk−1 + Sk−2) and multiplying the first column by −1 we
get (Sk−2 + Sk−3, Sk−1 + Sk−2), allowing the inductive step. □

We apply Lemma 3.15 to A′
n. After applying this lemma we get the matrix[

1 0
x y

]
reduced by row operation to

[
1 0
0 y

]
where y = detA′

n.
Thus we can conclude that our Alexander-Burau-Fox module given by An is:

Z[t±1]/(gn)⊕ Z[t±1]/(detA′
n · gn).

The det(A′
n) is computed in the next section.

3.4. Computing determinant of the matrix A′
n. With this computation the main result

on the structure of the Alexander-Burau-Fox module of (σ1σ
−1
2 )n is complete.

Proposition 3.16. For A′

(1) detA′
2k+1 = 1.

(2) detA′
2k = 3− t− t−1.

Proof. (1) We have

detA′
2k+1 = (Sk + t−1Sk−1)(Sk + tSk−1)− SkSk−1

= S2
k + (t+ t−1)SkSk−1 + S2

k−1 − SkSk−1

= S2
k + (t+ t−1 − 1)SkSk−1 + S2

k−1 = S2
k − zSkSk−1 + S2

k−1

= S2
k − (Sk+1 + Sk−1)Sk−1 + S2

k−1

= S2
k − Sk−1Sk+1

= 1
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by product to sum formulas. (2) We proceed as in the previous case. We have

detA′
2k =

(
(Sk + Sk−1) + t−1(Sk−1 + Sk−2)

)(
(Sk + Sk−1)) + t(Sk−1 + Sk−2)

)
− (Sk + Sk−1)(Sk−1 + Sk−2)

= (Sk + Sk−1)
2 + (t+ t−1)(Sk + Sk−1)(Sk−1 + Sk−2) + (Sk−1 + Sk−2)

2 − (Sk + Sk−1)(Sk−1 + Sk−2)

= (Sk + Sk−1)
2 + (t+ t−1 − 1)(Sk + Sk−2)(Sk−1 + Sk−2) + (Sk−1 + Sk−2)

2

= (Sk + Sk−1)
2 − z(Sk + Sk−1)(Sk−1 + Sk−2) + (Sk−1 + Sk−2)

2

= (Sk + Sk−1)
2 − ((Sk+1 + Sk−1) + (Sk + Sk−2))(Sk−1 + Sk−2) + (Sk−1 + Sk−2)

2

= (Sk + Sk−1)
2 − (Sk+1 + Sk)(Sk−1 + Sk−2)

= (SkSk−1 − Sk+1Sk−3) + (SkSk − Sk+1Sk−1) + (Sk−1Sk−1 − SkSk−2)

= S1 + S0 + S0

= z + 2

= 1− t− t−1 + 2

= 3− t− t−1.

□

Thus, with the computation of det(A′
n), we complete the proof of the main theorem,

Theorem 3.3.

18



4. Relation to Burau representation

The crossing illustrated in Figure 5 can be interpreted as a 2-braid, and the ABF relation
as a linear map: for a positive crossing, B(a, b) = (b, ta + (1 − t)b. This map is given in a
standard basis (1, 0), (0, 1) by the matrix:

B =

[
0 1
t 1− t

]
which is an element ofGL(2, Z[t±1]). More generally, for n− braid we have a homomorphism
Bn → GL(n, Z[t± 1]) given on generators by

B(σi) =


Idi−1 0 0 0
0 0 1 0
0 t 1− t 0
0 0 0 Idn−i−1


This representation is know as the (unreduced) Burau representation [Burau]. Because for
the negative crossing we have B(b, a) = ((1− t−1)b, t−1a) so

B(σ−1
i ) =


Idi−1 0 0 0
0 1− t−1 t−1 0
0 1 0 0
0 0 0 Idn−i−1


Clearly B(σi)B(σ−1

i ) = Idn reflecting second Reidemeister move. In older literature the
role of σi and σ−1

i (and t and t−1) is changed (historically negative and positive was not always
the same and till know braid theorists use the opposite convention from knot theorists).

The matrix B(γ) − Idn where γ ∈ Bn gives (with relations in rows) description of the
unreduced Alexander-Burau-Fox module. This is, in fact, the matrix used in our calculation
in Chapter 3.

5. Speculations and Future Directions

To place our result in a broader context, we should mention the classical result of J.Minkus
and Mulazzani-Vesnin [Min, MV] relating n-fold branch coverings of 2-bridge links with
double branch coverings of certain links. In our case, he notices that the n-fold branch
coverings of S3 along the figure eight knot is homeomorphic to the double branch cover of
S3 branched along the closure of the braid (σ1σ

−1
2 )n. Thus our theorem on the group of Fox

colorings can be reformulated in the language of homology of M
(n)
41

, where M
(n)
L denotes the

n-fold branch coverings of S3 branched along the link L. We plan to explore this connection
to analyze left orderings of the fundamental groups of some branched coverings; compare
[DaPr]. We recall the results of [BGW], which show that the 2-fold branch coverings of S3

along a non-split alternating link produce a fundamental group which is not left-orderable.
Plans proved in [Pla] that odd branch covering of S3 along any knot has a double form.

That is, there exists G such that

H1(M
(n)
k ) = G⊕G for any odd k.

Turaev produces a related result for k even (compare [Web, DW]). We observe a similar
phenomenon in our computation of ABF for (σ1σ

−1
2 )n.
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Our theorem for the Reduced Fox Coloring Group corresponds well with Plan’s and Tu-
raev’s results, but what does this mean in the generalization to the ABF module?

Is there some reasonable interpretation of (σ1σ
−1
2 )∞ in relation to ABF module?
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